
MD5 HASHING IN DIGITAL FORENSICS
James Buncle

University of Birmingham
ug67jxb@cs.bham.ac.uk

ABSTRACT

This report gives an overview of the MD5 cryptographic hash function and its key uses in
digital forensics. It also introduces Fuzzy Hashing for identifying similar files and its
potential uses in digital forensics.
Background research has been completed and various papers have been studied in detail,
including both those specific to MD5 in digital forensics and those that are related to it.
Summaries have been produced for the key current practises and the reasoning behind their
use. Suggestions of current and future implications and usages for MD5 have also been
made, and how Fuzzy Hashing is introduced as a result of some of these issues.

Keywords: Digital Forensics, MD5, Fuzzy Hashing

1. INTRODUCTION
Message-Digest Algorithm 5 (MD5) Hashing is the
process of transforming a stream of data into a
shorter cryptographic hash key, which is calculated
using the MD5 hash function. The data stream can be
of any length and is normally referred to as the
'message'. The hash key produced is known as the
message digest or just 'digest', and is of a fixed
length. The produced digest is considered as the
'digital fingerprint' of its data stream.[5][7][11]

More specifically the MD5 digest is 128 bits long
and is expressed as a 32 digit hexadecimal number,
therefore there are 2128 (3.4x1038) possible unique
MD5 hashes[3][8].

Illustration 1: MD5 Function Process

The main quality of the MD5 hash function is that it
is relatively collision resistant, meaning that it is very
unlikely for two different messages to have the same
MD5 digest. [3][11]
As with all hash functions, the same file will always
produce the same hash (as long as it has not been
modified), and it is very difficult to reverse and
produce the original file from a given hash.

The MD5 hash function has a wide range of
applications, such as for storing passwords in
computer security. It can also be used for verifying
data integrity, where a precomputed MD5 of an
original file is used to validate a copy. Similar
techniques are also used in digital forensics.

2. MD5 AND DISK IMAGING
One of the applications of MD5 Hashing in digital
forensics is for error detection during the duplication
of disk drives, files and any other stream of data[6].
The following method is used in digital forensics to
ensure data integrity and to verify that a copy of
evidence is digitally identical to the original:

1. The original data stream is hashed using the
MD5 hash function, producing a unique
MD5 hash for that specific stream of bytes

2. The data stream is then copied, creating a
supposedly bitwise image

3. The image created is then also hashed
4. The original data streams hash is then

compared to the images hash
This is a very reliable method for verification as a
single bit difference in the image will produce a
completely different hash to the input stream [13].
Therefore a match will strongly suggest that the
image is an exact bitwise copy of the original. It is
very unlikely that any errors would still produce an
identical hash.[21][1][2]

1 2009

Illustration 2: Use of MD5 when Disk Imaging

The original drives hash can also be used further to
ensure that no modifications to the device or image
have been made throughout the forensic
investigation. The device can be re-hashed after the
examination has been completed, and compared to
the original. If there is a match this would confirm
that no changes had been made.

These are relatively simple and straightforward
techniques, however if the image produces a different
hash, which would indicate an error during the
imaging process, the whole drive will be need to be
re-imaged. An improvement on this would be to copy
a disk sector by sector and verify these sections
independently, for example by using block-based or
piecewise hashing. This way, if an error is produced,
it will be for a specific sector, and then only the data
integrity of that part would be threatened.

A further improvement would be to first rehash the
device and the image if a difference between hashes
is found. The new hashes would then be compared
again in case the error was thrown during the hashing
process, reducing any unnecessary recopying of the
disk.

3. MD5 FOR FILE SYSTEM ANALYSIS
Another application for MD5 hashing is for the
reliable identification of files and data reduction
during file system analysis [14][6].

Due to the increasing capacity of digital electronic
storage devices, there can be a vast amount of data to
analyse during a forensic examination. To examine
every file on a hard drive would be a lengthy and
time consuming task. Therefore MD5 can be used for
both reducing the amount of data needing to be

examined, and also identifying and flagging files for
inspection automatically.
As the MD5 hash function turns files of any size into
single 128bit hash keys, it can be used to reduce the
files on a disk to a set of fixed length strings that
uniquely identify them. This results in a much
smaller representation of a disks file system,
therefore making it significantly quicker to examine.

The generated set of hash keys can then be used for
the identification and therefore omission of irrelevant
files. Each hash can be compared to a set of
precomputed hashes for known files, such as
Operating System files. When a match is found the
hash is omitted, further reducing the amount of data
left to examine. When all irrelevant files are
removed, a much smaller set of hashes will remain.
Due to MD5s collision resistance, this is a reliable
and fast method for data reduction.

The same technique used for omitting files can also
then be used for the identification of incriminating
files. Instead of comparing the hashes to a set of
irrelevant file hashes, they are compared to a set of
known illegal or incriminating files. The files
identified as incriminating can then be flagged for
further inspection. Normally, the checking for both
irrelevant and incriminating files would occur during
the same process.[6][9]

MD5 is not always appropriate, for example during a
process known as file carving where files are
examined without using the files meta-data[19].
Theoretically, in the future this technique may
become unreliable as increasingly more files can be
found on a single storage device. If it comes to a

2 2009

Illustration 3: MD5 for File System Analysis

point where there are more files on a drive than there
are possible hashes, for example if the drive has
2128+1 unique files, then collisions will begin to
occur, as there will be at least two files with the same
hash. This would result in the possibility of
incriminating files being accidentally omitted and
vice versa. However, this would only have a
considerable effect if there are significantly more
than 2128 files.

Another problem, although currently not possible[3],
may be the development of programs that will cause
a given file to have the same hash as another even
though they are different, for example by adding
certain data to the end of the file. This could then be
used by a suspect to 'disguise' an incriminating file as
one that would normally be discarded, such as a
system file. A solution to this could be the use of
cryptographic salting, where data is inserted into the
message before hashing. Due to the nature of MD5
having a different hash from small changes, applying
the same salt function to the files being compared,
will cause a 'disguised' file to have a different hash,
but identical files will still have the same.

4. FUZZY HASHING
One of the issues with using MD5 hashing to identify
incriminating files on a suspects device is that the
suspect is able to avoid a file being detected by
changing or adding a single bit in the file, this will
have a cascading effect which would cause the file to
produce a completely different hash[3]. One solution
to this is to compare files for similarities, instead of
just whether or not they are digitally identical[6].

Finding the similarity between files has been studied
for decades[6]. However, more recently a new
methodology has been introduced to overcome this
issue, and is used for the identification of
homologous (similar) files.
This method is known as Context Triggered
Piecewise (CTP) Hashing, or “Fuzzy Hashing”[4]
[17], and is a combination of the Rolling hash and
Piecewise hashing[12].

Piecewise hashing (also known as Block-based
hashing) involves dividing a data stream into chunks
and hashing each part separately [12]. Then, to
discover the similarity of two files, the data streams
hashes can be compared with each other and a count
of matches taken. [13][14][15]

Illustration 4: Piecewise Hashing

However, the problem with this is that it will only
identify files that have had sections replaced by data
of equal length and not where data has been inserted
or deleted. This would cause a shift in the data
stream, producing different hashes. The quality of
being able to cope with the shifting problem is
known as Alignment robustness. [17]

To overcome this issue, Fuzzy Hashing uses another
hash to identify where each section for the piecewise
hash begins and ends, namely the rolling hash[19][5].
This is done by setting reset points or trigger values
in a file. A simpler example of this would be to set a
specific character as a trigger value when comparing
strings. Once the trigger value has been set, the data
before and after each value is hashed, resulting in a
set of hashes. This should ensure that the 'same'
sections in homologous files are hashed. [14]
The other option would be to produce a set of
possible hashes created by calculating the hashes at
various shifts, however this would consume
resources unnecessarily.
The CTP hash consists of combining the individual
hashes produced and separating them by a semicolon.
[13]
The hash can then be used to compare and rank a set
of files based on the similarity to another, by taking a
frequency count of the number of matches in the
hashes.
The files with a relatively high similarity can then be
flagged for further examination. [13][17][19]

This technique could be improved by recursively
checking files over a certain similarity with a more
thorough CTP hash function, for example by
rehashing a flagged file using a higher number of
trigger values that section the file for hashing. This
would increase the number of hashes available to
compare and check for similarity, if the file continues
to show high similarity it can remain flagged for
inspection, or otherwise omitted.

3 2009

As Fuzzy Hashing sections the data input when the
function is applied, it could also be used on a drive as
a whole, instead of individual files. This way sections
on the drive can be highlighted without having to
hash individual files. This would provide a single but
long CTP hash to use for comparison. However, this
would only be effective if the hash function was
detailed enough. Also, if used alone, would not
reduce the amount of non-flagged data that remains
to be examined manually.

5. CONCLUSION
The MD5 hash function will always be able to play a
part in digital forensics, although not necessarily in
the same way. It can always be used for ensuring
data integrity when copying disks, because the
security of the function has no implications in this
method. It is likely that in the future the MD5
function will be used in a piecewise manner or in
Fuzzy Hashing for the identification of incriminating
files.

As with most hashes, the MD5 hash function may
eventually become 'broken', and its reliability
reduced as a result. However there are techniques
that can be used to overcome this, such as salting
which was mentioned earlier.

MD5 may be replaced in the future by a more
improved version, such as one that is optimised and
can perform faster and more efficiently, however
there is little need for this as the hardware
implementing the function is more likely to be
improved first.

REFERENCES
[1] Mamoun Alazab, Sitalakshmi Venkatraman, Paul
Watters, “Effective Digital Forensic Analysis of the NTFS
Disk Image”, University of Ballarat, 2009
(http://www.ubicc.org/files/pdf/3_371.pdf)

[2] Ming Hu; Yan Wang, "MD5-Based Error Detection"
PACCS '09. Pacific-Asia Conference on , pp.187-190, 16-
17 May 2009, (http://ieeexplore.ieee.org/stamp/stamp.jsp?
arnumber=5232318&isnumber=5231959)

[3]AccessData Corp, “MD5 Collisions: The Effect on
Computer Forensics”, April 2006,
(http://www.accessdata.com/media/en_us/print/papers/wp.
md5_collisions.en_us.pdf)

[4] Creative Commons, “Context Triggered Piecewise
Hashing”, 2007,
(http://www.forensicswiki.org/wiki/Context_Triggered_Pi
ecewise_Hashing)

[5] Microsoft Corporation, “Remote Differential
Compression Algorithm Specification”, 2009
(http://msdn.microsoft.com/en-

us/library/dd357722%28PROT.13%29.aspx)

[6] Vassil Roussev, Yixin Chen, Timothy Bourg, Golden
G. Richard III, “md5bloom: Forensic filesystem hashing
revisited, Digital Investigation”, Volume 3, Supplement 1,
The Proceedings of the 6th Annual Digital Forensic
Research Workshop (DFRWS '06), September 2006,
Pages 82-90, ISSN 1742-2876, DOI:
10.1016/j.diin.2006.06.012.

(http://www.sciencedirect.com/science/article/B7CW4-
4KCXJJ6-5/2/70726ca488e87b615f649db7ee3a15e5)

[7] Jarvinen, K.; Tommiska, M.; Skytta, J., "Hardware
Implementation Analysis of the MD5 Hash Algorithm"
System Sciences, 2005. HICSS '05. Proceedings of the
38th Annual Hawaii International Conference on , pp.
298a-298a, 03-06 Jan. 2005
(http://ieeexplore.ieee.org/stamp/stamp.jsp?
arnumber=1385853&isnumber=30166)

[8] “MD5”, (http://en.wikipedia.org/wiki/Md5)

[9] Shira Danker Rick Ayers Richard P. Mislan, “Hashing
Techniques for Mobile Device Forensics” ALL SCALE
DIGITAL DEVICE FORENSICS JOURNAL, VOL. 3,
NO. 1, JUNE 2009 ISSN# 1941-6164 1
(http://www.ssddfj.org/papers/SSDDFJ_V3_1_Dankner_A
yers_Mislan.pdf)

[10]William Josephson, “Hashing and Fingerprinting”,
Princeton University, 2005, (http://www.cs.princeton.edu/
courses/archive/spr05/cos598E/bib/William.pdf)

[11] Singh, M.; Garg, D., "Choosing Best Hashing
Strategies and Hash Functions", Advance Computing
Conference, 2009. IACC 2009. IEEE International , pp.50-
55, 6-7 March 2009

[12] Long Chen, Guoyin Wang, "An Efficient Piecewise
Hashing Method for Computer Forensics", International
Workshop on Knowledge Discovery and Data Mining, pp.
635-638, First International Workshop on Knowledge
Discovery and Data Mining (WKDD 2008), 2008.

[13] Dustin Hurlbut, “Fuzzy Hashing for Digital Forensic
Investigators”, January 2009, (http://www.accessdata.com/
downloads/media/Fuzzy_Hashing_for_Investigators.pdf)

[14] Jesse Kornblum, “Identifying almost identical files
using context triggered piecewise hashing”, Digital
Investigation, Volume 3, Supplement 1, The Proceedings
of the 6th Annual Digital Forensic Research Workshop
(DFRWS '06), September 2006, Pages 91-97, ISSN 1742-
2876, DOI: 10.1016/j.diin.2006.06.015.

(http://www.sciencedirect.com/science/article/B7CW4-
4KCPVBY-8/2/2c551a44e599be80e791d28d74f458c9)

[15] Vassil Roussev, Golden G. Richard III, Lodovico
Marziale, “Multi-resolution similarity hashing, Digital
Investigation”, Volume 4, Supplement 1, September 2007,
Pages 105-113, ISSN 1742-2876, DOI:
10.1016/j.diin.2007.06.011.

(http://www.sciencedirect.com/science/article/B7CW4-
4P06CJD-7/2/17011376c1aee1cef8c99e728e67494f)

[16]Creative Commons, “Piecewise Hashing”, 2007,
(http://www.forensicswiki.org/wiki/Piecewise_hashing)

4 2009

[17] DigitalNinja,“'Fuzzy Clarity' Using Fuzzy Hashing
Techniques to Identify Malicious Code”, 2007,
(http://digitalninjitsu.com/downloads/Fuzzy_Clarity_rev1.
pdf)

[18] Andrew Tridgel, “Spamsum Readme”, October 2009,
(http://samba.org/ftp/unpacked/junkcode/spamsum/READ
ME)

[19] Jesse Kornblum, “Fuzzy Hashing”, ManTech SMA,
(http://jessekornblum.com/presentations/htcia06.pdf)

[20] Xiaoyun Wang and Hongbo Yu, “How to Break MD5
and Other Hash Functions” Shandong University

[21] Wick, C.; Avramov-Zamurovic, S.; Lyle, J., "Hard
disk interface used in computer forensic science",
Instrumentation and Measurement Technology
Conference, 2004. IMTC 04. Proceedings of the 21st IEEE
, vol.3, pp. 1780-1783 Vol.3, 18-20 May 2004
(http://ieeexplore.ieee.org/stamp/stamp.jsp?
arnumber=1351427&isnumber=29628)

[22] Eric Thompson, “MD5 collisions and the impact on
computer forensics”, Digital Investigation, Volume 2,

Issue 1, February 2005, Pages 36-40, ISSN 1742-2876,
DOI: 10.1016/j.diin.2005.01.004.

(http://www.sciencedirect.com/science/article/B7CW4-
4FM544N-1/2/ef0d68006096a3f12959a02436506beb)

[25] Polytechnic University, “Digital Forensics”,
(http://isis.poly.edu/courses/cs996-
forensics/Lectures/forensics_module11.ppt)

[26] Digital Forensics BJ Gleason

[27] Wilsdon, T.; Slay, J., "Digital forensics: exploring
validation, verification & certification", Systematic
Approaches to Digital Forensic Engineering, 2005. First
International Workshop on, vol.,no., pp. 48-55, 7-9 Nov.
2005
(http://ieeexplore.ieee.org/stamp/stamp.jsp?
arnumber=1592521&isnumber=33521)

[28] J. Black, M. Cochran, T. Highland “A Study of the
MD5 Attacks: Insights and Improvments” March 2006,
(http://www.cs.colorado.edu/~jrblack/papers/md5e-
full.pdf)

5 2009

