
James Buncle
878244

Testing Software with High Degrees of Complexity, Uncertainty and
Novelty

1.0 Introduction
Complex, uncertain and novel software systems create a greater challenge when it
comes to testing. The majority of traditional techniques are often more difficult to
use to test such systems, and are often inappropriate or not thorough enough.

In commercial software, which are often considered as complex, there is always a
compromise between getting the product to market and releasing it without errors.
Frequently, this is because testing can be as complex as the software itself. This
means that to fully test the whole system is costly and time consuming. If testing it
takes too long and postpones release, the market may have moved on and there
may be no longer any need for the software.

2.0 Problems with Testing
2.1 Complex Software
With complicated software it is often just as
difficult to test as it is to design and build. This
therefore makes testing a resource consuming
process, making it no longer feasible to test the
whole system completely. Therefore it becomes
more sensible to prioritise functionality, and test
accordingly.

Another problem with complex software testing is
that any changes in the requirements of the
software during the development of it will have a
cascading effect on the software system and
therefore on the testing of it. A small change in
part of the software due to alteration to the
requirements document will often have an effect
on all the parts that are dependent on it.
Therefore, it is important to be able to identify all
these parts in order to determine the effect on the
design of the tests. This itself can be a lengthy
process, therefore the tests, as with the software,
need to be designed with maintainability in mind.
The more complex the software, the more
difficult it is to manually complete tests, therefore
a need to automate testing as much as possible is
needed. The automation of testing is a relatively
new and currently a difficult task in itself.

2.2 Software with Uncertainty
In order to thoroughly test whether or not the
software fulfils its original and intended purpose
it is necessary to have a clearly defined, high
quality requirements document. This is normally
required to be able to design tests which cover all,
or at least the majority, of possible circumstances
which can occur. With software that is shows
uncertainty, it is difficult to specify the exact
functionality required. This therefore makes it
very difficult to test thoroughly, after all, how can
the software be tested if it is unclear what is to be
tested?

2.3 New Software
When testing software that is similar to existing
or previously designed software, older test
designs and techniques can be reused as a basis
for the new software. However when the
software, or part of the software, is new and
hasn't been done before, the design of tests
becomes more difficult as this will be as new as
the software itself.

3.0 Black Box and White Box Testing
In software engineering, testing is divided into
two main types, Black box testing and white box
testing.

Black box involves the testing of software,

1 2010

James Buncle
878244

overall or in sections, from an external
perspective whereas white box testing is based on
the internal software structure and its code.

3.1 Black Box
Black box involves techniques such as
specification-based testing, which is used to
validate whether the software fulfils the software
requirements, verifying whether or not the
software does what it is supposed to. This
technique is dependent on a good quality
specification, which for new and complex
software is difficult to do.

For software that has a high degree of uncertainty,
black box testing is generally more difficult, as a
high quality specification is difficult to produce.
The poorer the quality of the specification, the
more difficult it is to design the black box tests.
The two main black box techniques are
acceptance testing and system testing:

3.1.1 Acceptance Testing
Acceptance testing is completed by the sponsor
who is then able to verify whether or not the
system meets the criteria requested.
Typically this involves completing various tests,
known as a test suite, on the completed system.
Each test, known as a test case, has a boolean
pass or fail result.

The tests are designed with the aim to be identical
to or as close as possible to real world usage.
If all cases in a test suite are correct then the suite
is considered as a success.

This method of testing may be more appropriate
with software that has a high degree of
uncertainty , complexity and novelty as it allows
the sponsor to judge whether or not the software
does what they originally intended. Ideally, this
would be better used on an iterative basis, where
the software is demonstrated to the sponsors
regularly on a prototype basis. This should reduce
the amount of work that would otherwise be
wasted if the sponsors were only given the pre-
final version, which would only then be rejected
and need to be redone. The problems arise with
designing the tests, which would generally need

to be initially vague, however over time the tests
can be developed and therefore become more
robust.

3.1.2 System Testing
System testing is used to verify that the entire
software system satisfies the specified
requirements. It is completed after the system has
been integrated and it used to evaluate it as a
whole. This method involves the implementation
various techniques to test the functional
requirements of the system.

For software that is uncertain, where possible this
will give a more definitive method of determining
whether the software does what it is supposed to.
Generally, there will be an overall understanding
of what is required, but the details uncertain. As
this is an overall evaluation of the software, it
seems more appropriate. However, if any of the
tests fail, the causes of the problems will be
difficult to identify.

3.2 White Box Testing
White box testing includes techniques that
involve manipulating and testing the code
directly. An example technique is fault injection,
where a fault is deliberately introduced into the
code so that the effects can be observed. Other
techniques involve testing individual parts of the
software, such as classes. This is useful for
complex software as there is an opportunity to
break it down into smaller, simpler parts, making
it easier to test.

The two more popular types of white box testing
are unit and regression testing:

3.2.1 Unit Testing
Unit testing involves testing small units, typically
a single class, separately from the rest of the
system. The units are normally the smallest
testable parts that the system can be broken down
into. Each individual test is known as a test case,
and is normally independent from other parts of
the system. The interaction of the part being
testing with the rest of the system is simulated by
specifying parameters.

When using this method to test complex software
it can be difficult to foresee all possible

2 2010

James Buncle
878244

interactions between units. It may be found that
every unit passes the tests designed, but will not
work correctly when fully integrated.
This method is suitable for software that has a
good quality requirements specification as the
individual tests can be designed based on these.
However where the software is uncertain is can
be difficult to understand what each unit is meant
to do, therefore increasing difficulty in designing
the tests.

3.2.2 Regression Testing
Regression testing is used to evaluate the
functionality that is new or has been developed in
the software. This is done be rerunning tests
designed for the original or older code to
determine whether any old functionality is lost.
This may involve retesting the whole system or
selecting appropriate parts to retest using
Regression Test Selection (RTS).
Again, this method is useful for complex
software, as it saves time through the reuse of
tests. This means that tests are not redesigned
unnecessarily and can simply be developed with
the software changes. This is relatively
straightforward for testing the independent parts
in the software or the software overall, however it
can be a time consuming process, as it will often
involve retesting parts that are unaffected by the
changes. This is where RTS becomes important,
which involves selecting appropriate parts.

The test designers will therefore need to
determine whether or not to do an overall test of
the section involved or to use RTS.

4.0 Verification and Validation of Complex
Algorithms and Mathematical Models

Complex algorithms and mathematical models
are developed for a specific purpose. The validity
of these is determined by their ability to fulfil that
purpose correctly. In order to verify the success of
these, the algorithms need to be tested using
several different sets of parameters and
conditions. This is done because an algorithm
may be valid for one set of conditions, but invalid
for another.

Often it is too expensive on resources to try to

determine absolute validity, therefore testing will
often be performed until a certain confidence is
reached and the algorithm is considered valid
enough for its purpose.

4.1 General Approaches
There are three main general approaches to the
validation of software models and algorithms,
each approach can use various techniques to
determine validity.

The first and most popular approach is where the
developers of the model determine whether or not
the code is valid themselves. The developers
make a subjective decision based on various
evaluations and tests conducted previously.
Another approach is to use 3rd party testers to
determine validity, this method is known as
Independent Verification and Validation (IV& V).
The 3rd party normally consists of individuals that
are independent of both the developers and the
sponsors of the algorithms. Their purpose
involves performing various evaluations of the
algorithm to determine its validity. This method is
costly and is therefore normally only used if the
development of the model has a high amount of
capital invested in it.

The third and least popular method is to use
scoring model. This involves breaking down the
algorithm into separate parts which are tested
individually using scores or weightings. The
algorithm is then evaluated by taking an overall
score. This is then compared to a predetermined
pass score to determine validity. If the collected
value is over the predetermined score then the
algorithm is considered as valid.

4.2 Techniques
There are a wide range of techniques that can be
used within the approaches specified above to
verify models. A few examples are suggested
below.

One technique is to display the algorithms
graphically, this can then be observed over time
and judgements can be made as to whether or not
the algorithms are operating as expected. This
method is very dependent on the type of
algorithm being represented, as displaying some

3 2010

James Buncle
878244

algorithms in a graphical way may be
inappropriate. It also depends on the quality of
the representation, as if it is visually unclear it
will be difficult to evaluate.
Another technique is to use Degenerate Tests,
where portions of the model are removed (or
replaced) or internal parameters are altered. The
algorithm is then tested to see how it copes with
the new modifications. This is also a good method
to test the robustness of the algorithm, if it
handles well with the modifications it can be
considered as more robust than if it didn't.

Extreme-Condition Tests involve testing for
extreme or unlikely circumstances. For instance
by using inputs that should not, or are very
unlikely to occur. This method of testing is useful
for algorithms designed to be used with highly
varying parameters, however it is often difficult
to know exactly what the extremes are. It is also
possible to get overly confident, it may work for
rare circumstances, but not for common ones.
Another option is to control the values, so that
single parameters are tested separately, one at a
time. This involves fixing input and internal
values as constants, to create a controlled
environment. This is probably the most scientific
approach to test. Another technique is the
opposite of this, where various values are
changed and the effect on the model and outputs
are evaluated, this is known as Parameter
Variability.

5.0 Conclusion
The testing of complex software manually is a
lengthy and resource consuming process.
Therefore the future will see an increase in the
use of automated testing. This automation may be
code based or graphically based. The code based
automation generally involves white box testing,
where classes or packages are tested from within
the code. The problem with this however, is that
the testing may have an effect the codes
environment. The solution to this is to submit the
code with the test code within it.

The other automation option is through the use of

a Graphical User Interface, allowing the user to
execute tests which are partially automated.
Each approach to testing has its problems,
therefore it is generally necessary to use a
combination of testing approaches, ideally one
test would then compensate the problems of
another. However as mentioned previously, with
software that is complex, uncertain and novel,
some approaches are not appropriate.

As testing software can be a time consuming
process, there is often compromise between
releasing a buggy system, and releasing it early.
Therefore, testing has to be prioritised to reduce
the impact that problems may have on the system.
The idea being that the crucial parts of the system
will be tested more thoroughly than less
important elements of the system.
Bibliography
[1] Verifying and validating simulation models

[2] Jan Stafford, “Testing Strategies for complex
environments”, TechTarget, 2009

[3] Erman Coskun, Martha Grabowski, “Software
complexity and its impacts in embedded intelligent real-
time systems”, Journal of Systems and Software

[4] Marc-Philippe Huget, “Executing Ultra-Large
Software Systems with MultiagentSystems”, Universite de
Savoie, 2008

[5] V. V. Lipaev, “A Methodologyof Verification and
Testing of Large Software Systems” Moscow 109004
Russia, 2003

[6] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold,
“Scaling Regression Testing to Large Software Systems”,
Georgia Institute of Technology, 2004

[7] Winston W. Royce, “Managing the Development of
Large Software Systems”, The Institute of Electrical and
Electronics Engineers, 1970

[8] Jiantao Pan, “Software Testing”, Carnegie Mellon
University, 1999

[9] Sagar Naik, Piyu Tripathy, “Software Testing and
Quality Assurance: Theory and Practice”, Wiley
InterScience, 2008

[10] Applabs, “Future of SoftwareTesting”, 2008

[11] James Bach, “Risk and Requirements-Based Testing”
1999

[12] Laurie Williams and Sarah Heckman, “Software
Engineering: Testing”, OpenSiminar, 2008

4 2010

	Testing Software with High Degrees of Complexity, Uncertainty and Novelty
	1.0 Introduction
	2.0 Problems with Testing
	2.1 Complex Software
	2.2 Software with Uncertainty
	2.3 New Software

	3.0 Black Box and White Box Testing
	3.1 Black Box
	3.1.1 Acceptance Testing
	3.1.2 System Testing

	3.2 White Box Testing
	3.2.1 Unit Testing
	3.2.2 Regression Testing

	4.0 Verification and Validation of Complex Algorithms and Mathematical Models
	4.1 General Approaches
	4.2 Techniques

	5.0 Conclusion
	Bibliography

